Abstract
The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to the temperature range for both models: a low-temperature one where the distance in the long-time limit is finite and seems not to depend on the initial distance and the system size; a high-temperature one where the distance vanishes in the long-time limit. Using the finite size scaling method, the dynamical phase transition (damage spreading transition) temperature is obtained as for the Ising model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.