Abstract

Precast concrete frame structures are widely adopted around the world due to their various advantages, so it is important to study their seismic performance. The development of damage mechanics has enabled us to accurately investigate the typical failure mechanisms of precast structures. This paper presents three of the most commonly used modeling approaches based on damage mechanics for analysis of precast reinforced concrete structures under cyclic loading and compares the performance of the three models. Particularly, the shear behavior of the joint panel and the bond-slip behavior of the beam–column interfaces are especially considered, which are the key issues for precast concrete structures. First, the fundamental assumptions, formulations, and modeling strategies are given in detail for each approach. Then, the unified damage mechanics for concrete is introduced, and the model for reinforcement bars and the consideration of the bond-slip effect are also presented. Several benchmark cyclic tests of precast beam-to-column connections are chosen to evaluate the accuracy and efficiency of the modeling approaches. The numerical results, e.g. the capacities, deformations, and energy dissipation of the connections, are compared to the experimental results to show the ability of each approach. With this study, we can gain a further understanding of the characteristics and applicability of each modeling approach, helping us make a better decision in choosing which modeling approach is appropriate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.