Abstract

The aim of this paper is the numerical prediction of the cracking path followed by a surface crack front in plates constituted of different materials (determined by the exponent m of the Paris law), subjected to cyclic tension or cyclic bending loading. To this end, a numerical modelling was developed on the basis of the discretization of the crack front (characterized with elliptical shape) and the crack advance at each point perpendicular to such a front, according to a Paris law, using the stress intensity factor (SIF) calculated by Newman and Raju. Results show that the crack leads to a preferential propagation path that corresponds to a very shallow initial crack with a quasi-circular crack front. The increase of the Paris exponent produces a quicker convergence during fatigue crack propagation from the different initial crack shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.