Abstract

Increasing terrorist attacks towards ordinary or strategic buildings and soft targets represent one of the major impetus to improve existing methods of design for blast-resistant structures. When a building undergoes an extreme dynamic event such as blast or impact, local damage of its key structural components (i.e., the columns) may lead to severe failure and even collapse of the entire building. Consequently, the availability of simplified, time efficient and reliable methods of analysis can be relevant for design. In this paper, H-section steel columns subjected to blast loads are numerically investigated, so as to derive practical formulations for damage evaluation assessment. The strategy is based on parametric Finite Element (FE) models (with up to 5600 configurations), validated towards experiments and, used as an extensive data bank, for further elaboration via Gene Expression Programming. Analytical formulations are in fact proposed for calculating some relevant parameters of design, such as (a) the initial and (b) the residual axial capacity of the examined columns. The collected results show that the proposed formulations can offer a good level of accuracy and high calculation efficiency for blast loaded H-section steel columns. In addition, an expression is proposed to relate the damage index (based residual axial capacity) to the conventional displacement/rotational index. Sensitivity analyses and some calculation examples are finally presented, to further investigate the potential of the approach for design purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.