Abstract

This article proposes a framework for the damage assessment of and effect of temperature variations in laminated composites using Lamb waves and unsupervised autonomous features. A network of piezoelectric transducers is employed to generate data for 18 health states of a laminated composite plate. The data is processed with sparse autoencoder (SAE) for unsupervised autonomous features. The discriminative capabilities of the extracted features are confirmed by processing the feature space in the supervised and unsupervised frameworks of machine learning. The confusion matrices of supervised learning provided physical insights into the problem. The feature space was also visualized in two dimensions in an unsupervised manner through principal component analysis (PCA), which revealed physically consistent results for the effect of temperature variations, damage of different severity levels, and the undamaged paths between the actuator and sensors. The healthy state data and information on the paths between the actuator and sensors was processed via SAE for damage localization. The proposed approach can be employed for the autonomous assessment of composite structures for the presence of damage and variations of operating temperatures while using both supervised and unsupervised machine learning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.