Abstract

We have studied the damage induced in fluorapatite (Ca10(PO4)6F2) sinters after 70-MeV Kr, 120MeV I and 163-MeV Au ion irradiations at room temperature. On the basis of X-ray powder diffraction data we conclude that fluorapatite is not completely amorphized due to ion-induced recrystallization. This recrystallization of the amorphous phase is greatly enhanced for Au ions with a high electronic stopping power. We also have used the 3He(d, p) 4He nuclear reaction to study the migration of implanted 3-MeV 3He ions after swift heavy ion irradiations. The proton yield curves versus deuteron energy for irradiated samples exhibit two bumps for high fluences. These excitation curves are deconvoluted by using a computer code based on a two-diffusion equation model of helium atoms in two accumulation zones. Optimizations of the model parameters give access to the diffusion coefficients and helium depth profiles in the two zones. This yields two broad peaks in the helium depth profiles, the first one is near the end-of-range region and the second one is shifted at about half way between the surface and the first peak. This shift is interpreted as a Radiation-Enhanced Diffusion (RED) effect which is found to increase with fluence for Kr ions, and with electronic stopping power from Kr to Au ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.