Abstract

Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However, in-situ observations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset of in-situ observations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.