Abstract

Abstract This paper describes daily peak load forecasting using an adaptive hybrid two-stage methodology. Because the time series of electricity consumption is mainly influenced by seasonal effects, the double seasonal Holt–Winters exponential smoothing method is firstly used for next-day peak electricity demand forecasting. In the second stage, the secondary forecasting model is applied taking into account the benefits of Fuzzy c-means clustering; K-nearest neighbors algorithm; Wavelet packet decomposition; and Adaptive Neuro-Fuzzy Inference System, for further improvement in forecasting accuracy. The whole architecture of the proposed model will be presented and the results will be compared with neural networks and stand-alone adaptive neuro-fuzzy inference system based approaches by using a gathered data from the Algerian power system. The results show that: (1) the proposed methodology is the best among all the considered schemes, (2) the FKW-ANFIS has satisfactory performance in both normal and special daily conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.