Abstract
The objective of this paper is to develop an artificial neural network (ANN) model which can be used to predict daily mean ambient temperatures in Denizli, south-western Turkey. In order to train the model, temperature values, measured by The Turkish State Meteorological Service over three years (2003–2005) were used as training data and the values of 2006 were used as testing data. In order to determine the optimal network architecture, various network architectures were designed; different training algorithms were used; the number of neuron and hidden layer and transfer functions in the hidden layer/output layer were changed. The predictions were performed by taking different number of hidden layer neurons between 3 and 30. The best result was obtained when the number of the neurons is 6. The selected ANN model of a multi-layer consists of 3 inputs, 6 hidden neurons and 1 output. Training of the network was performed by using Levenberg–Marquardt (LM) feed-forward backpropagation algorithms. A computer program was performed under Matlab 6.5 software. For each network, fraction of variance ( R 2) and root-mean squared error (RMSE) values were calculated and compared. The results show that the ANN approach is a reliable model for ambient temperature prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.