Abstract

In M2M networks, most nodes are powered by battery; hence the overused nodes may easily be out of power, which causes the reduction of network lifetime. To solve this problem, it is helpful to balance network load into more nodes and links, so as to reduce network congestion. Multipath routing is a useful tool to reduce congestion, since data flow can be dispersed into multiple paths. However, most of the previous multipath routing algorithm is based on the path disjoint constraint, which leads to the lack of routing paths and the failure to disperse data flow into more links. In this paper, a directed acyclic graph based multipath routing algorithm for congestion minimization (DAGMR) is proposed, where different routing paths are confined in a directed acyclic graph (DAG) under time delay constraint. Furthermore, the data flow distribution is accomplished through partial capacity network to obtain the minimal multipath routing congestion factor. Simulation indicates that our algorithm can obtain lower congestion factor and formulates multipath routing graph with more nodes and links than algorithm with path disjoint constraint. In addition, our algorithm is a polynomial time complexity algorithm with nodes and links number of the entire network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.