Abstract

Recent work has resulted in the first high-resolution, spectroscopic measurements of energetic charged particles on OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 496 (1997)]. Energy spectra of charged fusion products have been obtained from two spectrometers, and have been used to deduce various physical quantities in imploded capsules. In this paper the first use of 14.7 MeV deuterium–helium3 (D–3He) proton spectra for diagnosing shell areal density (ρR) and fuel ion temperature (Ti) is discussed. For thick-plastic shell capsules, shell areal densities between 20 and 70 mg/cm2 and ion temperatures between 3 and 5 keV have been determined. The spectral linewidths associated with such capsules are found to be wider than the doppler widths. This effect, the focus of future study, is the result of ρR evolution during the burn; or is the result of an extended burn region; or results from nonuniformities in the shell. For thin-glass shell capsules, the spectral linewidths are dominated by the doppler width, and ion temperatures between 10 and 15 keV were determined. These measurements have been also compared and contrasted with the results from neutron measurements and from one-dimension hydrodynamic simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.