Abstract

After treatment with cholera toxin, homogenates of intact intermediate lobe (IL) tissue of rat pituitary gland synthesized more cAMP than did homogenates of untreated IL tissue, and only in the presence of GTP did dopamine or apomorphine diminish the elevated adenylate cyclase activity in homogenates of cholera toxin-treated IL tissue. Furthermore, when tested on cholera toxin-treated IL tissue, 5'-guanylyl imidodiphosphate [Gpp(NH)p] and two other nonhydrolyzable analogs of GTP inhibited adenylate cyclase activity in the absence of either a dopaminergic agonist or GTP; GTP reversed the Gpp(NH)p-induced inhibition of adenylate cyclase activity. Apomorphine, a dopaminergic agonist, abolished the ability of GTP to reverse the inhibition by Gpp(NH)p; this effect of apomorphine was prevented by fluphenazine, a dopaminergic antagonist. Sodium fluoride inhibited adenylate cyclase activity to approximately the same level obtained with GTP and apomorphine. In addition, apomorphine decreased cAMP accumulation and alpha MSH release from dispersed IL cells pretreated with cholera toxin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.