Abstract
Eclipsing Algol-type systems containing a δ Scuti (hereafter δ Sct) star enable precise determination of physical parameters and the investigation of stellar internal structure and evolution. We present the absolute parameters of CZ Aquarius (hereafter CZ Aqr) based on TESS data. CZ Aqr has an orbital period of 0.86275209 day, a mass ratio of 0.489 (6), and the secondary component nearly fills its Roche lobe. O − C analysis reveals a downward parabolic trend and a cyclical variation with a period of 88.2 yr. The downward parabola suggests a long-term decrease in the orbital period with Ṗ = −3.09 × 10−8 days yr−1. The mass loss rate is estimated to be 4.54 × 10−9 M ⊙ yr−1, which is possibly due to magnetic stellar wind or a hot spot. The cyclical variation might be caused by the light travel time effect via the presence of a third body with a minimum mass of M3min = 0.312 (21) M ⊙. Additionally, there are two possible celestial bodies in a 2:7 resonance orbit around CZ Aqr. The asymmetric light curve is explained by adding a hot spot on the surface of the primary star. After removing the binary model, 26 frequencies were extracted from TESS data. Two radial modes were newly identified among three possible independent frequencies. Our results show that the eclipsing Algol-type system is composed of a δ Sct primary star and a subgiant star in a quadruple system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.