Abstract

Metallic nanoparticles are interesting areas of research due to their unique properties which can be advantageous for producing smart products. Silver nanoparticles (AgNPs) are remarkably used in pharmaceutical industry because of their strong biological activities. The aim of the present study was to investigate the cytotoxicity and wound healing capacity of the biologically prepared silver nanoparticles via green synthesis route. Cytotoxicity of the biogenic AgNPs was determined by MTT (3- [4, 5- dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium-bromide) assay against L929 fibroblast cell line. Wound healing properties of the AgNPs were evaluated using in vitro-scratch wound healing assay using 3T3 fibroblast cell line. Biosynthesized AgNPs inhibited the propagation of fibroblasts at a half maximal inhibitory concentration (IC50) of 23.507 μg/mL after 24 h incubation. In vitro wound healing assay also revealed that the biogenic AgNPs stimulated the 3T3 fibroblasts' cell proliferation. It can be suggested that biologically synthesized AgNPs can be used effectively for biomedical applications such as wound dressing materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.