Abstract

Dietary exposure to phytosterols has increased in recent years due to the incorporation of these compounds into cholesterol-lowering products. Previous studies have investigated the cytotoxic effects of the oxidized derivatives of β-sitosterol and determined that phytosterol oxidation products (POP) have a similar but less potent toxicity compared to their cholesterol equivalents. In the present study, the cytotoxicity of the oxidized derivatives of stigmasterol were investigated in the U937 cell line. The stigmasta-5,22-diene-3β,7β-diol (7β-OH), 5,6-epoxystigmasta-22,23-diol (epoxydiol), 5,6,22,23-diepoxystigmastane (diepoxide), and (22R,23R)-stigmast-5-ene-3β,22,23-triol (22R,23R-triol) derivatives were identified as the most cytotoxic, and the mode of cell death was identified as apoptosis in cells incubated with 7β-OH, epoxydiol, and diepoxide stigmasterol. The antioxidants α-tocopherol, γ-tocopherol, and β-carotene did not protect against apoptosis induced by 7β-OH and diepoxide stigmasterol; however, α-tocopherol was found to protect against epoxydiol-induced apoptosis. The cellular antioxidant, glutathione, was depleted and the apoptotic protein, Bcl-2, was down-regulated by the stigmasterol oxides identified as apoptotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.