Abstract

The differential elastic modulus of an active actomyosin network is computed as a function of applied stress, taking into account both thermal and motor contributions to filament compliance in the low-frequency domain. It is shown that, due to a dual nature of motor activity, increasing motor concentration may either stiffen the network due to stronger prestress or soften it due to motor agitation, in accordance with experimental data. Prestress anisotropy, which may be induced by redistribution of motors triggered by external force, causes anisotropy of the elastic moduli. This helps to explain the contradictory phenomena of cell fluidization and resolidification in response to transient stretch observed in recent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.