Abstract
Gallic acid (GA) is a powerful antioxidant extracted from plants of the Brazilian Cerrado. Oxidative stress plays an important role in the occurrence of radiation-induced osteonecrosis in patients treated for head and neck cancer. There is a need to develop research aimed at developing complementary therapies to prevent or reverse bone damage. The aim of the present study was to investigate the effect of GA in preosteoblasts exposed to therapeutic ionizing radiation. MC3T3-E1 preosteoblast cells were treated with 10 µM GA and exposed to 6 Gy ionizing radiation. We performed in vitro assays of cell proliferation, oxidative stress analysis by detection of reactive oxygen species, and alkaline phosphatase assay. GA at lower concentrations was able to significantly increase proliferation and inhibit radiation-induced generation of reactive oxygen species in osteoblast precursor cells, despite ionizing radiation-induced injury. Furthermore, GA significantly increased alkaline phosphatase at a dose of 6 Gy. The findings suggested that GA could attenuate ionizing radiation-induced injuries in osteoblast precursor cells. Moreover, in vivo studies are needed to better investigate the role of GA in osteonecrosis, especially in cancer patients undergoing radiotherapy or taking antiresorptive drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of molecular and cellular medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.