Abstract

Octadecaneuropeptide (ODN) and its precursor diazepam-binding inhibitor (DBI) are peptides belonging to the family of endozepines. Endozepines are exclusively produced by astroglial cells in the central nervous system of mammals, and their release is regulated by stress signals and neuroactive compounds. There is now compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. In vivo, ODN causes a very strong neuroprotective action against neuronal degeneration in a mouse model of Parkinson's disease. The neuroprotective activity of ODN is based on its capacity to reduce inflammation, apoptosis, and oxidative stress. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. In N2a cells, ODN also promotes survival and stimulates neurite outgrowth. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed. The antiapoptotic and neurotrophic properties of ODN, including its antioxidant, antiapoptotic, and pro-differentiating effects, suggest that this gliopeptide and some of its selective and stable derivatives may have therapeutic value for the treatment of some neurodegenerative diseases.

Highlights

  • The existence of binding sites for benzodiazepines (BZs), the most widely prescribed and therapeutically used drugs for their anxiolytic, sedative, and muscle relaxant properties, has prompted several teams to search for endogenous ligands of the BZ receptors

  • The team of Erminio Costa has isolated from rat brain extracts an 11-kDa polypeptide able to competitively displace tritiated diazepam on synaptosomes, which has been called diazepam binding inhibitor (DBI) [1]

  • We will focus on ODN, which is the major form of endozepines produced in the brain and whose structure has been well-preserved during evolution, suggesting that it exerts important biological functions in the central nervous system (CNS)

Read more

Summary

Frontiers in Endocrinology

There is compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed.

INTRODUCTION
At Tissue Level
Olfactory bulb Cerebral cortex Hippocampus Striatum Cerebellum Hypothalamus
At the Cellular Level
REGULATION OF OCTADECANEUROPEPTIDE RELEASE
BIOLOGICAL ACTIVITIES OF OCTADECANEUROPEPTIDE IN THE CENTRAL NERVOUS SYSTEM
Effect of Octadecaneuropeptide on Cell Proliferation
Protective Effects of Octadecaneuropeptide on Neuronal Cells
AUTHOR CONTRIBUTIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.