Abstract

The use of stem cells from the apical papilla (SCAPs) has been proposed as a means of promoting root maturation in permanent immature teeth, and plays a significant role in regenerative dental procedures. However, the role of SCAPs may be compromised by microenvironmental factors, such as hypoxic conditions and the presence of bacteria from infected dental root canals. We aim to investigate oral bacterial modulation of SCAP in terms of binding capacity using flow cytometry and imaging, real-time cell proliferation monitoring, and cytokine secretion (IL-6, IL-8, and TGF-β isoforms) under anaerobic conditions. SCAPs were exposed to key species in dental root canal infection, namely Actinomyces gerensceriae, Slackia exigua, Fusobacterium nucleatum, and Enterococcus faecalis, as well as two probiotic strains, Lactobacillus gasseri strain B6 and Lactobacillus reuteri (DSM 17938). We found that A. gerensceriae, S. exigua, F. nucleatum, and E. faecalis, but not the Lactobacillus probiotic strains bind to SCAPs on anaerobic conditions. Enterococcus faecalis and F. nucleatum exhibited the strongest binding capacity, resulting in significantly reduced SCAP proliferation. Notably, F. nucleatum, but not E. faecalis, induce production of the proinflammatory chemokine IL-8 and IL-10 from SCAPs. Production of TGF-β1 and TGF-β2 by SCAPs was dependent on species, cell line, and time, but secretion of TGF-β3 did not vary significantly over time. In conclusion, SCAP response is compromised when exposed to bacterial stimuli from infected dental root canals in anaerobic conditions. Thus, stem cell-mediated endodontic regenerative studies need to include microenvironmental conditions, such as the presence of microorganisms to promote further advantage in the field.

Highlights

  • More than 700 different bacterial species have been isolated from the oral cavity (Aas et al, 2005)

  • The opportunistic bacterial strains F. nucleatum, A. gerensceriae, S. exigua, and E. faecalis were able to bind to stem cells from the apical papilla (SCAP), irrespective of the donor

  • The strongest binding was observed for SCAP cocultured with F. nucleatum since the fluorescence intensity clearly shifted to the right in comparison to controls (Figure 1A)

Read more

Summary

Introduction

More than 700 different bacterial species have been isolated from the oral cavity (Aas et al, 2005). A much broader spectrum of bacterial taxa can be identified using generation sequencing methods (Deo and Deshmukh, 2019). During their lifetime, this microbiome and the host stay in a versatile equilibrium that could develop into dental disease if this balance is lost (Darveau, 2009). Congenital deformities, or having suffered a dental trauma injury constitute major risk factors for bacterial invasion into the root canal system (endodontic infection), which can lead to periapical inflammation and bone resorption (apical periodontitis). Trauma to the teeth can result in injuries of the supporting dental structures that can lead to root inflammation and infection if bacteria reach the dental pulp and surrounding tissue. Up to 27% of traumatized teeth develop root canal infection (Hecova et al, 2010), with serious consequences for tooth development and survival

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.