Abstract

In spite of extensive research, immunologic control mechanisms against Porcine Reproductive and Respiratory Syndrome virus (PRRSv) remain poorly understood. Cytokine responses have been exhaustively studied in nursery pigs and show contradictory results. Since no detailed reports on cytokine responses to PRRSv in pregnant females exist, the objectives of this study were to compare host cytokine responses between PRRSv-infected and non-infected pregnant gilts, and to investigate relationships between cytokine levels in infected gilts and viral load or fetal mortality rate. Serum samples and supernatants of peripheral blood mononuclear cells (PBMC) either stimulated with PRRSv or phorbol myristate acetate/Ionomycin (PMA/Iono) were analyzed for cytokines/chemokines: interleukins (IL) 1-beta (IL1β), IL4, IL8, IL10, IL12, chemokine ligand 2 (CCL2), interferon alpha (IFNα) and interferon gamma (IFNγ). Three cytokines (IFNα, CCL2, IFNγ) in gilt serum differed significantly in inoculated versus control gilts over time. In supernatants of PRRSv stimulated PBMC from PRRSv-infected gilts, levels of IFNα were significantly decreased, while IL8 secretion was significantly increased. PRRSv infection altered the secretion of all measured cytokines, with the exception of IFNα, from PBMC after mitogen stimulation, indicating a possible immunomodulatory effect of PRRSv. IFNα, CCL2, and IFNγ in serum, and IFNγ in supernatants of PMA/Iono stimulated PBMC were significantly associated with viral load in tissues, serum or both. However, only IFNα in supernatants of PRRSv stimulated PBMC was significantly associated with fetal mortality rate. We conclude that of the eight cytokines tested in this study IFNα was the best indicator of viral load and severity of reproductive PRRSv infection.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-014-0113-8) contains supplementary material, which is available to authorized users.

Highlights

  • Cytokines and chemokines play a key role in the regulation of the innate, humoral (T-helper 2 [Th2]) and cellular (T-helper 1 [Th1]) immune responses [1]

  • INOC gilts showed a significant increase in CCL2 and IFNα in sera collected on D2 and D6, whereas IFNγ was increased significantly on D2 only (Figure 2)

  • High serum levels of IL1β and IL8 at all 4 time points were measured in individual INOC and control gilts were similarly sham inoculated (CTRL) gilts, but Porcine Reproductive and Respiratory Syndrome virus (PRRSv) inoculation had no effect on these analytes over time (Additional file 1)

Read more

Summary

Introduction

Cytokines and chemokines play a key role in the regulation of the innate, humoral (T-helper 2 [Th2]) and cellular (T-helper 1 [Th1]) immune responses [1]. Cytokines including the type I interferons and pro-inflammatory cytokines (interleukins 1 (IL1), IL6 and tumor necrosis factor-alpha (TNFα)), and late cytokines such as interferongamma (IFNγ), are important regulators of adaptive immune responses [2]. Bead-based multiplex assays, known as Fluorescent Microsphere Immunoassays (FMIA), became available for measurement of cytokines in porcine specimens. FMIA technology relies on the availability of capture and detection antibodies (Abs) enabling specific and sensitive measurement of the respective analytes. Because a limited number of swine antibodies are available and not all work well in multiplex FMIA the use of FMIA to detect swine cytokines is presently limited [13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.