Abstract

β cell dedifferentiation is a key mechanism for β cell dysfunction in type 2 diabetes mellitus (T2DM). Although it has been indicated in previous studies that β cell dedifferentiation could be induced by inflammation, the cytohistologic analyses of inflammation-induced β cell dedifferentiation in human islets is lacking. The present study aims to cytohistologically characterize the β cell dedifferentiation of human islets treated by proinflammatory cytokines Interleukin-1β/Tuman necrosis factor-α/Interferon-γ (IL-1β/TNF-α/IFN-γ), which is a frequently-used method to mimic the islet inflammation in previous studies. The loss of cytosolic FOXO1 expression, the loss of nucleic NKX6.1 expression, and the gain of ALDH1A3 expression in β cells are proclaimed as marking events for β cell dedifferentiation. Taking advantages of islets from organ donors and the immunofluorescence staining methods, the present study visualized the β cell dedifferentiation events marked by different markers, and quantified the frequency of each event as well. We successfully captured and described the characteristics of the differentiating/differentiated β cells. We found that dedifferentiated β cells were increased in the cytokines treated islets, evidenced by the increase of β cells with FOXO1 translocated to the nucleus (INS+FOXOnuc), β cells with NKX6.1 exported from the nucleus (INS+NKX6.1cyt), and β cells loss of NKX6.1 expression (INS+NKX6.1-), and β cells with dual expression of insulin and progenitor marker ALDH1A3. Consistently, we found that proinflammatory cytokines IL-1β/TNF-α/IFN-γ treatment reduced the mRNA expression of key β cell markers, but elevated the expression of progenitor marker genes. This study gives the most direct evidence for inflammation-induced β cell dedifferentiation in human islets, and supports the concept that anti-inflammation treatments may facilitate alleviating the β cell dedifferentiation in human T2DM islets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.