Abstract

BackgroundMicroarray analysis has been used as the first-tier genetic testing to detect chromosomal imbalances and copy number variants (CNVs) for pediatric patients with intellectual and developmental disabilities (ID/DD). To further investigate the candidate genes and underlying dosage-sensitive mechanisms related to ID, cytogenomic mapping of critical regions and bioinformatic mining of candidate brain-expressed genes (BEGs) and their functional interactions were performed. Critical regions of chromosomal imbalances and pathogenic CNVs were mapped by subtracting known benign CNVs from the Databases of Genomic Variants (DGV) and extracting smallest overlap regions with cases from DatabasE of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). BEGs from these critical regions were revealed by functional annotation using Database for Annotation, Visualization, and Integrated Discovery (DAVID) and by tissue expression pattern from Uniprot. Cross-region interrelations and functional networks of the BEGs were analyzed using Gene Relationships Across Implicated Loci (GRAIL) and Ingenuity Pathway Analysis (IPA).ResultsOf the 1,354 patients analyzed by oligonucleotide array comparative genomic hybridization (aCGH), pathogenic abnormalities were detected in 176 patients including genomic disorders in 66 patients (37.5%), subtelomeric rearrangements in 45 patients (25.6%), interstitial imbalances in 33 patients (18.8%), chromosomal structural rearrangements in 17 patients (9.7%) and aneuploidies in 15 patients (8.5%). Subtractive and extractive mapping defined 82 disjointed critical regions from the detected abnormalities. A total of 461 BEGs was generated from 73 disjointed critical regions. Enrichment of central nervous system specific genes in these regions was noted. The number of BEGs increased with the size of the regions. A list of 108 candidate BEGs with significant cross region interrelation was identified by GRAIL and five significant gene networks involving cell cycle, cell-to-cell signaling, cellular assembly, cell morphology, and gene expression regulations were denoted by IPA.ConclusionsThese results characterized ID related cross-region interrelations and multiple networks of candidate BEGs from the detected genomic imbalances. Further experimental study of these BEGs and their interactions will lead to a better understanding of dosage-sensitive mechanisms and modifying effects of human mental development.

Highlights

  • Microarray analysis has been used as the first-tier genetic testing to detect chromosomal imbalances and copy number variants (CNVs) for pediatric patients with intellectual and developmental disabilities (ID/developmental delay (DD))

  • Conventional cytogenetic evaluation of Intellectual disability (ID)/DD/multiple congenital anomalies (MCA) showed an abnormality detection rate of 3.7% by karyotyping for large numerical and structural chromosomal abnormalities and up to 6.8% when combined with fluorescence in situ hybridization (FISH) analysis for targeted cryptic and subtelemeric rearrangements [2]

  • CNV characterization and classification Of the 1354 pediatric patients referred for oligonucleotide array comparative genomic hybridization (aCGH) analysis, 373 genomic imbalances were detected; 205 of these imbalances were denoted as pathogenic abnormalities in 176 patients and 168 imbalances were classified as variant of uncertain clinical significance (VOUS)

Read more

Summary

Introduction

Microarray analysis has been used as the first-tier genetic testing to detect chromosomal imbalances and copy number variants (CNVs) for pediatric patients with intellectual and developmental disabilities (ID/DD). Conventional cytogenetic evaluation of ID/DD/MCA showed an abnormality detection rate of 3.7% by karyotyping for large numerical and structural chromosomal abnormalities and up to 6.8% when combined with fluorescence in situ hybridization (FISH) analysis for targeted cryptic and subtelemeric rearrangements [2]. This molecular cytogenetic analysis was limited by the average Giemsa banding resolution of 5–10 megabase (Mb) and the number of targeted probes available in FISH analysis. The clinical application of aCGH for large case series of children and newborns has been reported; the diagnostic yield from cytogenomic analysis on pediatric patients with ID/DD/MCA and autism is about 12-20% [5,6,7,8,9,10,11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.