Abstract

This paper reports on the in vitro cytotoxicity, bioactivity behaviour and mechanical properties of novel injectable calcium phosphate cement filled with hydroxylated multi-walled carbon nanotubes and bovine serum albumin (CPC/MWCNT-OH/BSA). To predict the in vitro bioactivity of the calcium phosphate composites, we investigated apatite formation on CPC/MWCNT-OH/BSA composites after soaking in simulated body fluid (SBF) for up to 28 days. Compressive strength tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and cell culture experiments with human CCD-18Co fibroblasts cell lines were performed to evaluate the effect of SBF pre-treatment on the mechanical, structural and biological properties of the CPC/MWCNT-OH/BSA composites. Although apatite formation increased significantly with SBF immersion period, the results showed that all soaked CPC/MWCNT-OH/BSA composites exhibited up to 2.5 times lower compressive strength (13–20 MPa), which were however higher than values reported for the strength of trabecular bone (2–12 MPa). Cell culture experiments showed that low concentrations (6.25 and 12.5 μg/ml) of bio-mineralised CPC/MWCNT-OH/BSA composites led to cell proliferative rather than cytotoxic effects on fibroblasts, evidenced by high cell viabilities (104–113%). The novel CPC/MWCNT-OH/BSA composites presented in this study showed favourable cytocompatible and bioactive behaviour along with high compressive strength (13–32 MPa) and are therefore considered as an attractive bone filling material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.