Abstract

The first sign of neurogenesis in the embryo of grasshopper, Chortophaga viridifasciata (Orthoptera: Acrididae), is signaled by a partition of the ectodermal cells into non-neural ectodermal cells and neural eetodermal cells. The neuroblasts are differentiated from neural ectodermal cells. In the present study, we examined the pattern of mitotic activity in the developing embryo by tracing the incorporation of BrdU in S phase nuclei. The results indicate that the ectodermal cells in 6-day old embryos do not show any signs of differentiation. In 7-day old embryos, in which ectodermal cells become partitioned into 2 types, almost no neural ectodermal cells are incorporated with BrdU, whereas a constant incorporation is revealed in non-neural ectodermal cells. Among the mitotically quiescent neural ectodermal cells, which are arrested at the GI stage of the cell cycle, in 8-day old embryos, the neuroblasts are the first to resume their mitotic activity, while the other cells are then released from the mitotic quiescence. It seems that the mitotic quiescence may be an essential process to acquire a neural fate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.