Abstract

The cyto- and chemoarchitecture of basal forebrain cholinergic neurons (BFCN) was investigated in the lower primate, the common marmoset (Callithrix jacchus). A large population of magnocellular, hyperchromic, and choline acetyltransferase (ChAT)-positive neurons was detected in the marmoset basal forebrain. The distribution of these neurons was similar to those in higher primates. Thus, ChAT-positive neurons were observed in the medial septum (Ch2), the vertical (Ch2) and horizontal (Ch3) limbs of the diagonal band of Broca, and the nucleus basalis of Meynert (Ch4). The Ch4 complex was relatively well differentiated and displayed distinct sectors. We detected anterior (Ch4a, with a medial and a lateral subdivision), intermediate (Ch4i, with a dorsal and a ventral subdivision), and posterior (Ch4p) sectors in the marmoset Ch4. The Ch4i was relatively small while the Ch4p was large. Similar to the rodent, the marmoset Ch1 extended quite a distance posteriorly, and the Ch4p displayed a major interstitial component distributed within the globus pallidus, its medullary laminae, and the internal capsule. Virtually all of the marmoset BFCN displayed acetylcholinesterase activity, and low affinity (p75NTR) and high affinity (Trk) neurotrophin receptor immunoreactivity. A majority contained immunoreactivity for calbindin-D28K and calretinin. Many of the Ch4 neurons also displayed tyrosine hydroxylase immunoreactivity. The BFCN lacked galanin immunoreactivity, but were innervated by galanin-positive fibers. None of the marmoset BFCN were NADPH-d-positive. Thus, the BFCN display major anatomical and biochemical differences in the marmoset when compared with higher primates. The marmoset BFCN also display many characteristics common to other primates. This fact, combined with the relatively short life span of the marmoset, indicates that this species may be ideal for studies of age-related changes in the BFCN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.