Abstract

We have shown previously that Cyp11b1, an 11beta-hydroxylase responsible for glucocorticoid biosynthesis in the adrenal gland, was induced by cAMP in androgen-producing Leydig-like cells derived from mesenchymal stem cells. We found that Cyp11b1 was induced in male Leydig cells, or female theca cells, when human chorionic gonadotropin was administered in immature mice. Expression of Cyp11b1 in rodent gonads caused the production of 11-ketotestosterone (11-KT), a major fish androgen, which induces male differentiation or spermatogenesis in fish. As in teleosts, plasma concentrations of 11-KT were elevated in human chorionic gonadotropin-treated mice. In contrast to teleosts, however, plasma concentrations of 11-KT were similar in both sexes, despite levels of testosterone, a precursor substrate, being about 20 times higher in male mice. Because expression of 11beta-hydroxysteroid dehydrogenase type 2, was much higher in the mouse ovary than in the testis, conversion of testosterone into 11-KT may occur more efficiently in the ovary. In a luciferase reporter system that was responsive to and activated by androgens, 11-KT efficiently activated mammalian androgen receptor-mediated transactivation. Our results suggest that the androgen metabolic pathway is conserved between teleosts and mammals, despite sexual dominance and reproductive functions of 11-KT being altered during evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.