Abstract

We investigate the deformation field induced by a cylindrical indentation on a face-centered cubic single crystal of aluminum or copper. We first present experimental measurements of the load‐displacement curve and the crystal lattice rotation field (under plane strain condition) of an aluminum single crystal subject to indentation, together with related results for a copper crystal. Next, finite element simulations of the lattice rotation and displacement field associated with the cylindrical indentation are provided. The numerical and experimental results about lattice rotation features are compared with theoretical predictions based on the single crystal plasticity. Finally, the displacement fields obtained from the numerical solutions and experiments are compared. Both electron backscatter diffraction experiments using scanning electron microscopy and finite element simulations show the existence of different slip sector boundaries in the single crystals, in agreement with theoretical predictions of active slip systems and dislocation structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.