Abstract

In this note, we find a monomial basis of the cyclotomic Hecke algebra \({\mathcal{H}_{r,p,n}}\) of G(r,p,n) and show that the Ariki-Koike algebra \({\mathcal{H}_{r,n}}\) is a free module over \({\mathcal{H}_{r,p,n}}\), using the Grobner-Shirshov basis theory. For each irreducible representation of \({\mathcal{H}_{r,p,n}}\), we give a polynomial basis consisting of linear combinations of the monomials corresponding to cozy tableaux of a given shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.