Abstract
AbstractFully aromatic poly(heterocyclic imides) of high molecular weight were prepared by the cyclopolycondensation reactions of aromatic diamines with new monomer adducts prepared by condensing orthodisubstituted aromatic diamines with chloroformyl phthalic anhydrides. The low‐temperature solution polymerization techniques yielded tractable poly(amic acid), which was converted to poly(heterocyclic imides) by heat treatment to effect cyclodehydration at 250–400°C under reduced pressure. In this way, the polyaromatic imideheterocycles such as poly(benzoxazinone imides), poly(benzoxazole imides), poly(benzimidazole imides) and poly(benzothiazole imides) were prepared, which have excellent processability and thermal stability both in nitrogen and in air. The poly(amic acids) are soluble in such organic polar solvents as N,N‐dimethyl‐acetamide, N‐methylpyrrolidone, and dimethyl sulfoxide, and the films can be cast from the polymer solution of poly(amic acids) (ηinh = 0.8–1.8). The film is made tough by being heated in nitrogen or under reduced pressure to effect cyclodehydration at 300–400°C. The polymerization was carried out by first isolating the monomer adducts, followed by polymerization with aromatic diamines. On subsequently being heated, the open‐chain precursor, poly(amic acid), undergoes cyclodehydration along the polymer chain, giving the thermally stable ordered copolymers of the corresponding heterocyclic imide structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A-1: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.