Abstract
This study assessed whether cycling induced by functional electrical stimulation (FES) was more effective than passive cycling with placebo stimulation in promoting motor recovery and walking ability in postacute hemiparetic patients. In a double-blind, randomized, controlled trial, 35 patients were included and randomized to receive FES-induced cycling training or placebo FES cycling. The 4-week treatment consisted of 20 sessions lasting 25 minutes each. Primary outcome measures included the leg subscale of the Motricity Index and gait speed during a 50-meter walking test. Secondary outcomes were the Trunk Control Test, the Upright Motor Control Test, the mean work produced by the paretic leg, and the unbalance in mechanical work between paretic and nonparetic legs during voluntary pedaling. Participants were evaluated before training, after training, and at 3- to 5-month follow-up visits. No significant differences were found between groups at baseline. Repeated-measures ANOVA (P<0.05) revealed significant increases in Motricity Index, Trunk Control Test, Upright Motor Control Test, gait speed, and mean work of the paretic leg after training and at follow-up assessments for FES-treated patients. No outcome measures demonstrated significant improvements after training in the placebo group. Both groups showed no significant differences between assessments after training and at follow-up. A main effect favoring FES-treated patients was demonstrated by repeated-measures ANCOVA for Motricity Index (P<0.001), Trunk Control Test (P=0.001), Upright Motor Control Test (P=0.005), and pedaling unbalance (P=0.038). The study demonstrated that 20 sessions of FES cycling training significantly improved lower extremity motor functions and accelerated the recovery of overground locomotion in postacute hemiparetic patients. Improvements were maintained at follow-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.