Abstract

In this work, organic-inorganic hybrid materials containing stable silanol functionalities were designed by incorporating cyclic tetravinylsiloxanetetraols into photopolymerized polymer networks via the thiol-ene reaction, with the intent of tailoring the thermal and mechanical properties of the resulting materials. The effects of the cyclic tetravinylsiloxanetetraols concentration on the thermomechanical properties and thermal stability of pentaerythritol triallyl ether/pentaerythritol tetra(3-mercaptopropionate) (APE-PETMP) and allyl isocyanurate/pentaerythritol tetra(3-mercaptopropionate) (TTT-PETMP) ternary networks were evaluated using dynamic thermomechanical analysis and thermogravimetric analysis, respectively. Photopolymerization kinetics were monitored using real-time FTIR. Interestingly, an increase in glass transition temperature was observed with the APE-PETMP networks while a decrease in glass transition temperature was observed for the TTT-PETMP networks with increasing concentration of [Vi(OH)SiO]4. These observations are discussed in terms of cross-link density and monomer rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.