Abstract

In this paper, the results of a study on microstructural influences on cyclic strain response, deformation and fracture behavior of an alloy steel is presented Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was observed to be the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level this alloy steel revealed fracture to be mixed-mode with features reminiscent of “locally” ductile and brittle failure mechanisms. The mechanisms governing strain response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully-reversed strain cycling, magnitude of cyclic strain amplitude, and resultant fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.