Abstract

Abstract In-depth understanding of cyclic plasticity and fatigue damage is crucial for structural application of CrMnFeCoNi which is found to be highly printable. This study provides insights into the link between print processes, solidification microstructure, cyclic plasticity and fatigue damage evolution in the alloy fabricated by laser powder bed fusion. Thermodynamics-based predictions and experimental validation showed that Cr, Co and Fe partition to the core of the solidification cells, whilst Mn and Ni to the cell boundaries in all considered print parameters. Both dislocation slip and deformation twinning were found to be responsible for plastic deformation under monotonic loading. However, the former was found to be the single dominant mechanism for cyclic plasticity. The surface finish helped to substantially delay the crack initiation and cause lack-of-fusion porosity to be the main source of crack initiation. Most significantly, the scan strategies significantly affect grain arrangements and grain dimensions, leading to noticeable effects on fatigue crack propagation; in particular, the highest resistance crack propagation was seen in the meander scan strategy with 0° rotation thanks to the most columnar grains and the smallest spacing of grain boundaries along the crack propagation path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.