Abstract

In this paper the influence of discontinuous ceramic particulate reinforcements on cyclic stress response, cyclic stress versus strain response, cyclic strain resistance, deformation and fracture behavior of 2009 aluminum alloy discontinuously reinforced with silicon carbide particulates are presented and discussed. The cyclic strain amplitude–controlled fatigue properties and fracture characteristics of the 2009/SiC composite specimens are discussed for a range of cyclic strain amplitudes and at two different temperatures. The conjoint influence of test temperature and strain amplitude on cyclic stress response, cyclic stress versus strain response, and cyclic strain resistance is highlighted. The intrinsic mechanisms governing stress response, cyclic deformation and fatigue fracture characteristics are presented and discussed in light of the competing and mutually interactive influences of intrinsic composite microstructural effects, deformation characteristics of the composite constituents, cyclic strain amplitude and concomitant response stress, cyclic ductility, and test temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.