Abstract

We consider cyclic $m$-isometries on a complex separable Hilbert space. Such operators are characterized in terms of shifts on abstract spaces of weighted Dirichlet type. Our results resemble those of Agler and Stankus, but our model spaces are described in terms of Dirichlet integrals rather than analytic Dirichlet operators. The chosen point of view allows us to construct a variety of examples. An interesting feature among all of these is that the corresponding model spaces are contained in a certain subspace of the Hardy space $H^2$, depending only on the order of the corresponding operator. We also demonstrate how our framework allows for the construction of unbounded $m$-isometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.