Abstract

Cyclic di-GMP (c-di-GMP) plays an important role in bacterial adaptation to enable survival in changing environments. It orchestrates various pathways involved in biofilm formation, changes in the cell surface, host colonization and virulence. In this article, we report the presence of c-di-GMP in Mycobacterium smegmatis, and its role in the long-term survival of the organism. M. smegmatis has a single bifunctional protein with both GGDEF and EAL domains, which show diguanylate cyclase (DGC) and phosphodiesterase (PDE)-A activity, respectively, in vitro. We named this protein MSDGC-1. Deletion of the gene encoding MSDGC-1 did not affect growth and biofilm formation in M. smegmatis, but long-term survival under conditions of nutritional starvation was affected. Most of the proteins that contain GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. To gain further insight into the regulation of the protein, we cloned the individual domains, and tested their respective activities. MSDGC-1, the full-length protein, is required for activity, as its GGDEF and EAL domains are inactive when separated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.