Abstract

AbstractThe experimental results presented in Part I of this study were used to evaluate the predictive capabilities of two viscoelastic constitutive models. One of the models, developed by Xia and Ellyin, is in a differential form. The other, which is a modified Schapery model by Lai and Bakker, is in an integral form. The results of the comparison indicate that the Xia‐Ellyin constitutive model simulated the experimental observations well. This was attributed to the existence of a general rule that delineates the loading and unloading parts of the cyclic response. The modified Schapery model was able to predict the general trends of the deformation behavior; however, it was unable to correctly simulate the unloading behavior. This difference became more pronounced when the applied cyclic stress/strain was high. At high applied loads, the material response became more nonlinear. POLYM. ENG. SCI. 45:103–113, 2005. © 2004 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.