Abstract

AbstractA series of full‐scale laboratory experiments was conducted to investigate the cyclic behaviour of an external diaphragm joint between a steel I‐beam and a circular hollow section column. The joint incorporated two diaphragm plates (DPs) welded to the column's external wall and bolted to the flanges of the beam using tapered cover plates (TCPs). The joint was designed to limit yielding and plastic hinging of the TCPs while the other joint components remained elastic. This is necessary if the joint is to qualify for use in structures classified in the damage control structural performance range according to FEMA 356. Two parameters of the TCPs are investigated in this paper: steel grade and bolt preload force. The use of higher steel grades was found to impose undesirable higher strain demands on the beam and DPs and dissipate less energy than the joints with the lower grade. A controlled reduction in the bolt preload force allowed connection slippage to occur beyond the serviceability limit, created an additional energy dissipation fuse and allowed rotation of the plastic hinge region to exceed the 25 mrad required for medium ductility class structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.