Abstract

When Chlamydomonas reinhardtii gametes of opposite mating type are mixed together, they adhere by a flagella-mediated agglutination that triggers three rapid mating responses: flagellar tip activation, cell wall loss, and mating structure activation accompanied by actin polymerization. Here we show that a transient 10-fold elevation of intracellular cAMP levels is also triggered by sexual agglutination. We further show that gametes of a single mating type can be induced to undergo all three mating responses when presented with exogenous dibutyryl-cAMP (db-cAMP). These events are also induced by cyclic nucleotide phosphodiesterase inhibitors, which elevate endogenous cAMP levels and act synergistically with db-cAMP. Non-agglutinating mutants of opposite mating type will fuse efficiently in the presence of db-cAMP. No activation of mating events is induced by calcium plus ionophores, 8-bromo-cGMP, dibutyryl-cGMP, nigericin at alkaline pH, phorbol esters, or forskolin. H-8, an inhibitor of cyclic nucleotide-dependent protein kinase, inhibits mating events in agglutinating cells and antagonizes the effects of cAMP on non-agglutinating cells. Adenylate cyclase activity was detected in both the gamete cell body and flagella, with the highest specific activity displayed in flagellar membrane fractions. The flagellar membrane adenylate cyclase is preferentially stimulated by Mn++, unresponsive to NaF, GTP, GTP gamma S, AlF4-, and forskolin, and is inhibited by trifluoperazine. Cyclic nucleotide phosphodiesterase activity is also present in flagella. Our observations indicate that cAMP is a sufficient initial signal for all of the known mating reaction events in C. reinhardtii, and suggest that the flagellar cyclase and/or phosphodiesterase may be important loci of control for the agglutination-stimulated production of this signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.