Abstract

This study reports a simple and practical method to introduce antimicrobial and biofilm-controlling functions into hydroxyl- or amino-containing polymers such as cellulose using compounds derived from widely used reactive dyes. Two dichloro-s-triazine-based dyes, reactive blue 4 and sodium 4-(4,6-dichloro-1,3,5-triazinylamino)-benzenesulfonate (a colorless reactive "dye"), were covalently attached to cellulose at room temperature by replacing one chloride on the dyes with the hydroxyl groups on cellulose followed by hydrolysis under alkaline conditions to transform the remaining chloride into hydroxyl groups. The chemical reactions were confirmed by FT-IR studies, energy-dispersive X-ray spectroscopy, water contact angle measurement, and zeta potential analysis. The resulting cellulose provided powerful antimicrobial activities against Staphylococcus epidermidis (S. epidermidis, ATCC 35984, Gram-positive bacteria), Escherichia coli (E. coli, ATCC 15597, Gram-negative bacteria), and Candida albicans (C. albicans, ATCC 10231, yeast) and effectively prevented the formation of bacterial or fungal biofilms. The minimum inhibition concentrations of the hydrolyzed dyes were similar to that of phenol. In the zone of inhibition studies using phenolic compounds as positive controls, the hydrolyzed dyes and their model compound cyanuric acid demonstrated antimicrobial functions, suggesting that the antimicrobial activities were associated with the phenol-like hydroxyl groups on the triazine rings. Antimicrobial mechanism investigation indicated that the phenol-like structures on the dyed cellulose caused microbial lysis and leakage of intracellular components. The antimicrobial functions were durable upon repeated washing, and the dyed cellulose showed outstanding biocompatibility toward mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.