Abstract

Experimental autoimmune encephalomyelitis (EAE) is a Tcell-mediated autoimmune disease of the CNS that is widely used as an animal model of multiple sclerosis. In this study, we investigate the role of CXCL13, a chemokine involved in the development and organization of secondary lymphoid tissues, in the pathogenesis of EAE. We detected CXCL13 mRNA and protein in spinal cords of mice with EAE. CXCL13-deficient mice exhibited a mild, self-limited form of disease. CXCL13 appeared to be important for the establishment of chronic white matter lesions. Furthermore, adoptive transfer experiments with CXCL13-deficient hosts indicate that the chemokine plays a distinct role during the effector phase. Our findings raise the possibility that reagents that antagonize or inhibit CXCL13 might be useful for the treatment of neuroinflammatory diseases such as multiple sclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.