Abstract

Changes in calcium–calmodulin protein kinase II (CaMKII) have been well demonstrated in nervous tissue of diabetic animal models. Skin shares the same ectodermal origin as nervous tissue and it is often affected in diabetic patients. The goal of this study was to analyze expression of CaMKII in rat foot pad 2 weeks and 2 months after induction of diabetes type 1 and 2.Forty-two Sprague-Dawley rats were used. Diabetes mellitus type 1 (DM1) was induced with intraperitoneally (i.p.) injected 55mg/kg of streptozotocin (STZ) and diabetes mellitus type 2 (DM2) with a combination of high-fat diet (HFD) and i.p. injection of low-dose STZ (35mg/kg). Two weeks and two months following diabetes induction rats were sacrificed and skin samples from plantar surface of the both hind paws were removed. Immunohistochemistry was performed for detection of total CaMKII (tCaMKII) and its alpha isoform (pCaMKIIα). For detection of intraepidermal nerve fibers polyclonal antiserum against protein gene product 9.5 (PGP 9.5) was used.The results showed that CaMKII was expressed in the skin of both diabetic models. Total CaMKII was uniformly distributed throughout the epidermis and pCaMKIIα was limited to stratum granulosum. The tCaMKII and pCaMKIIα were not expressed in intraepidermal nerve fibers. Two weeks after induction of diabetes in rats there were no significant differences in expression of tCaMKII and pCaMKIIα between DM1 and DM2 compared to respective controls. In the 2-month experiments, significant increase in epidermal expression of tCaMKII and pCaMKIIα was observed in DM1 animals compared to controls, but not in DM2 animals.This study is the first description of cutaneous CaMKII expression pattern in a diabetic model. CaMKII could play a role in transformation of skin layers and contribute to cutaneous diabetic changes. Further research on physiological role of CaMKII in skin and its role in cutaneous diabetic complications should be undertaken in order to elucidate its function in epidermis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.