Abstract

This research investigates a concept for cut-out resonators that exploit a small area of active mass of a host plate structure for sake of tuned, low frequency vibration attenuation. Integrated computational and experimental studies reveal that embedding the resonators at locations offering high bending moment gradient and arranging the central resonator beam along a nodal line of bending moment best excite the first resonator eigenmode for targeted vibration suppression. These results are independent of plate boundary conditions and do not require periodic resonators to achieve notable vibration suppression outcomes. These design concepts may guide the development of resonators for vibration absorption of plates with arbitrary boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.