Abstract

Incentive for writing a limited area weather prediction model stemmed from the author’s several years stay at the University of California in Los Angeles, at the end of the sixties. Exposed to what he refers to as the Akio Arakawa approach, having had an idea for a scheme that was an improvement to what Arakawa was using, and being aware of the importance of topography for the weather of the country he was to continue his career in, led in 1973 to his first limited area 3D code, the forerunner of what was to become the Eta model. Refinements and enhancements introduced by the author in subsequent years and of the collaborator he acquired, Zaviša Janjić, resulted in the code that when installed at the then U.S. National Meteorological Center, attracted attention. Hallmarks of the model were Mesinger’s eta vertical coordinate, and Janjić’s transformation of the Arakawa horizontal advection scheme to the model’s semi-staggered B/E grid. In 1993 the Eta became the primary regional forecasting model of the U.S. Weather Bureau, and in 1998 its precipitation accuracy of 24-48 h forecasts became higher across all intensity thresholds than that of its predecessor, the Nested Grid Model (NGM) for its 00-24 h forecasts. Lately, the Eta is extensively used also as a regional climate model (RCM), mostly over the South American domain, and in near-real time as a tool for the North American Regional Reanalysis (NARR), run by the U.S. National Centers for Environmental Prediction/Climate Prediction Center. Several later unique numerical refinements of the Eta addressing problems noticed are summarized in a “before and after” fashion, and results are mentioned of its ensemble skill compared to that of its highly acclaimed driver European Centre for Medium-Range Weather Forecasts (ECMWF) model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.