Abstract
A monolayer of WTe$_2$ has been shown to display quantum spin Hall (QSH) edge modes persisting up to 100~K in transport experiments. Based on density-functional theory calculations and symmetry-based model building including the role of correlations and substrate support, we develop an effective electronic model for WTe$_2$ which fundamentally differs from other prototypical QSH settings: we find that the extraordinary robustness of quantum spin Hall edge modes in WTe$_2$ roots in a glide symmetry due to which the topological gap opens away from high-symmetry points in momentum space. While the indirect bulk gap is much smaller, the glide symmetry implies a large direct gap of up to 1~eV in the Brillouin zone region of the dispersing edge modes, and hence enables sharply boundary-localized QSH edge states depending on the specific boundary orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.