Abstract

Automated driving systems are often used for lane keeping tasks. By these systems, a local path is planned ahead of the vehicle. However, these paths are often found unnatural by human drivers. In response to this, this paper proposes a linear driver model, which can calculate node points reflective of human driver preferences and based on these node points a human driver preferred motion path can be designed for autonomous driving. The model input is the road curvature, effectively harnessed through a self-developed Euler-curve-based curve fitting algorithm. A comprehensive case study is undertaken to empirically validate the efficacy of the proposed model, demonstrating its capacity to emulate the average behavioral patterns observed in human curve path selection. Statistical analyses further underscore the model's robustness, affirming the authenticity of the established relationships. This paradigm shift in trajectory planning holds promising implications for the seamless integration of autonomous driving systems with human driving preferences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.