Abstract

AbstractWe introduce the curve complexity heuristic (CCH), a KD‐tree construction strategy for 3D curves, which enables interactive exploration of neighborhoods in dense and large line datasets. It can be applied to searches of k‐nearest curves (KNC) as well as radius‐nearest curves (RNC). The CCH KD‐tree construction consists of two steps: (i) 3D curve decomposition that takes into account curve complexity and (ii) KD‐tree construction, which involves a novel splitting and early termination strategy. The obtained KD‐tree allows us to improve the speed of existing neighborhood search approaches by at least an order of magnitude (i. e., 28×for KNC and 12×for RNC with 98% accuracy) by considering local curve complexity. We validate this performance with a quantitative evaluation of the quality of search results and computation time. Also, we demonstrate the usefulness of our approach for supporting various applications such as interactive line queries, line opacity optimization, and line abstraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.