Abstract
An analytical theory to estimate the electronic work function in curved geometries is formulated under Thomas-Fermi approximation. The work function is framed as the work against the electrostatic self-capacitive energy. The contribution of surface curvature is characterized by mean and Gaussian curvature (through multiple scattering expansion). The variation in work function of metal and semimetal nanostructures is shown as the consequence of surface radius of curvature comparable to electronic screening length. For ellipsoidal particles, the maximum value of work function is observed at the equator and poles for oblate and prolate particles, respectively, whereas triaxial ellipsoid shows nonuniform distribution of the work function over the surface. Similarly, theory predicts manifold increase in the work function for a particle with atomic scale roughness. Finally, the theory is validated with experimental data, and it is concluded that the work function of a nanoparticle can be tailored through its shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.