Abstract
Reaction–diffusion waves in multiple spatial dimensions advance at a rate that strongly depends on the curvature of the wavefronts. These waves have important applications in many physical, ecological and biological systems. In this work, we analyse curvature dependences of travelling fronts in a single reaction–diffusion equation with general reaction term. We derive an exact, non-perturbative curvature dependence of the speed of travelling fronts that arises from transverse diffusion occurring parallel to the wavefront. Inward-propagating waves are characterized by three phases: an establishment phase dominated by initial and boundary conditions, a travelling-wave-like phase in which normal velocity matches standard results from singular perturbation theory and a dip-filling phase where the collision and interaction of fronts create additional curvature dependences to their progression rate. We analyse these behaviours and additional curvature dependences using a combination of asymptotic analyses and numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.