Abstract

Due to the low mobility and the abundance of trap states in organic field-effect transistors (OFETs), the operation of conventional logic circuits-based OFETs needs a large voltage swing, and suffers large switching noise and low speed. In this letter, current-mode logic (CML) circuits composed of organic source-gated transistors (OSGTs) are proposed for high-speed signaling based on existing material and process technologies. Mixed-mode simulations show that CML circuits using simple resistive loads can still be operated much faster than an ideal conventional inverter with perfect active loads and OFETs free of traps. With the same supply voltage and device parameters, CML circuits can work with a wide range of signal swings. The superior analog performance of OSGTs is also shown to fit well with the design requirements for CML circuits in terms of low power supply, high output impedance, and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.